domingo, 21 de marzo de 2010

*-* BASE DE DATOS *-*

Definición de base de datos
Se define una base de datos como una serie de datos organizados y relacionados entre sí, los cuales son recolectados y explotados por los sistemas de información de una empresa o negocio en particular.


Características
Entre las principales características de los sistemas de base de datos podemos mencionar:

  • Independencia lógica y física de los datos.
  • Redundancia mínima.
  • Acceso concurrente por parte de múltiples usuarios.
  • Integridad de los datos.
  • Consultas complejas optimizadas.
  • Seguridad de acceso y auditoría.
  • Respaldo y recuperación.
  • Acceso a través de
lenguajes de programación estándar.


Tipos de Campos
Cada Sistema de Base de Datos posee tipos de campos que pueden ser similares o diferentes. Entre los más comunes podemos nombrar:
Numérico: entre los diferentes tipos de campos numéricos podemos encontrar enteros “sin decimales” y reales “decimales”.
Booleanos: poseen dos estados: Verdadero “Si” y Falso “No”.
Memos: son campos alfanuméricos de longitud ilimitada. Presentan el inconveniente de no poder ser indexados.
Fechas: almacenan fechas facilitando posteriormente su explotación. Almacenar fechas de esta forma posibilita ordenar los registros por fechas o calcular los días entre una fecha y otra.
Alfanuméricos: contienen cifras y letras. Presentan una longitud limitada (255 caracteres).
Autoincrementables: son campos numéricos enteros que incrementan en una unidad su valor para cada registro incorporado. Su utilidad resulta: Servir de identificador ya que resultan exclusivos de un registro.


Tipos de Base de Datos
Entre los diferentes tipos de base de datos, podemos encontrar los siguientes:

MySql: es una base de datos con licencia GPL basada en un servidor. Se caracteriza por su rapidez. No es recomendable usar para grandes volúmenes de datos.

PostgreSql y Oracle: Son sistemas de base de datos poderosos. Administra muy bien grandes cantidades de datos, y suelen ser utilizadas en intranets y sistemas de gran calibre.
Access: Es una base de datos desarrollada por Microsoft. Esta base de datos, debe ser creada bajo el programa access, el cual crea un archivo .mdb con la estructura ya explicada.
Microsoft SQL Server: es una base de datos más potente que access desarrollada por Microsoft. Se utiliza para manejar grandes volúmenes de informaciones.

Tipos de bases de datos
Las bases de datos pueden clasificarse de varias maneras, de acuerdo al contexto que se este manejando, o la utilidad de la misma:
Según la variabilidad de los datos almacenados
Bases de datos estáticas
Éstas son bases de datos de sólo lectura, utilizadas primordialmente para almacenar datos históricos que posteriormente se pueden utilizar para estudiar el comportamiento de un conjunto de datos a través del tiempo, realizar
proyecciones y tomar decisiones.
Bases de datos dinámicas
Éstas son bases de datos donde la información almacenada se modifica con el tiempo, permitiendo operaciones como actualización, borrado y adición de datos, además de las operaciones fundamentales de consulta. Un ejemplo de esto puede ser la base de datos utilizada en un sistema de información de una tienda de abarrotes, una farmacia, un videoclub.
Según el contenido
Bases de datos bibliográficas
Solo contienen un surrogante (representante) de la fuente primaria, que permite localizarla. Un registro típico de una base de datos bibliográfica contiene información sobre el autor, fecha de publicación, editorial, título, edición, de una determinada publicación, etc. Puede contener un resumen o extracto de la publicación original, pero nunca el texto completo, porque si no, estaríamos en presencia de una base de datos a texto completo (o de fuentes primarias —ver más abajo). Como su nombre lo indica, el contenido son cifras o números. Por ejemplo, una colección de resultados de análisis de laboratorio, entre otras.
Bases de datos de texto completo
Almacenan las fuentes primarias, como por ejemplo, todo el contenido de todas las ediciones de una colección de revistas científicas.
Directorios
Un ejemplo son las
guías telefónicas en formato electrónico.
Bases de datos o "bibliotecas" de información química o biológica
Son bases de datos que almacenan diferentes tipos de información proveniente de la
química, las ciencias de la vida o médicas. Se pueden considerar en varios subtipos:
  • Las que almacenan secuencias de nucleótidos o proteínas.
  • Las bases de datos de rutas metabólicas.
  • Bases de datos de estructura, comprende los registros de datos experimentales sobre estructuras 3D de biomoléculas-
  • Bases de datos clínicas.
  • Bases de datos bibliográficas (biológicas, químicas, médicas y de otros campos):
PubChem, Medline, EBSCOhost.

Bases de datos relacionales
Éste es el modelo utilizado en la actualidad para modelar problemas reales y administrar datos dinámicamente. Tras ser postulados sus fundamentos en
1970 por Edgar Frank Codd, de los laboratorios IBM en San José (California), no tardó en consolidarse como un nuevo paradigma en los modelos de base de datos. Su idea fundamental es el uso de "relaciones". Estas relaciones podrían considerarse en forma lógica como conjuntos de datos llamados "tuplas". Pese a que ésta es la teoría de las bases de datos relacionales creadas por Codd, la mayoría de las veces se conceptualiza de una manera más fácil de imaginar. Esto es pensando en cada relación como si fuese una tabla que está compuesta por registros (las filas de una tabla), que representarían las tuplas, y campos (las columnas de una tabla).
En este modelo, el lugar y la forma en que se almacenen los datos no tienen relevancia (a diferencia de otros modelos como el jerárquico y el de red). Esto tiene la considerable ventaja de que es más fácil de entender y de utilizar para un usuario esporádico de la base de datos. La información puede ser recuperada o almacenada mediante "consultas" que ofrecen una amplia flexibilidad y poder para administrar la información.
El lenguaje más habitual para construir las consultas a bases de datos relacionales es
SQL, Structured Query Language o Lenguaje Estructurado de Consultas, un estándar implementado por los principales motores o sistemas de gestión de bases de datos relacionales.
Durante su diseño, una base de datos relacional pasa por un proceso al que se le conoce como
normalización de una base de datos.
Durante los años 80 la aparición de
dBASE produjo una revolución en los lenguajes de programación y sistemas de administración de datos. Aunque nunca debe olvidarse que dBase no utilizaba SQL como lenguaje base para su gestión.

Correspondencia de cardinalidades

Dado un conjunto de relaciones en el que participan dos o más conjuntos de entidades, la correspondencia de cardinalidad indica el número de entidades con las que puede estar relacionada una entidad dada.

Dado un conjunto de relaciones binarias y los conjuntos de entidades A y B, la correspondencia de cardinalidades puede ser:

Uno a uno: Una entidad de A se relaciona únicamente con una entidad en B y viceversa.

Uno a varios: Una entidad en A se relaciona con cero o muchas entidades en B. Pero una entidad en B se relaciona con una única entidad en A.

Varios a uno: Una entidad en A se relaciona exclusivamente con una entidad en B. Pero una entidad en B se puede relacionar con 0 o muchas entidades en A.

Varios a varios: Una entidad en A se puede relacionar con 0 o muchas entidades en B y viceversa.

sábado, 20 de marzo de 2010

*** HISTORIA DEL INTERNET ***

"HISTORIA DEL INTERNET"
Los inicio de Internet nos remontan a los años 60. En plena guerra fría, Estados Unidos crea una red exclusivamente militar, con el objetivo de que, en el hipotético caso de un ataque ruso, se pudiera tener acceso a la información militar desde cualquier punto del país. Este red se creó en 1969 y se llamó ARPANET.
En principio, la red contaba con 4 ordenadores distribuidos entre distintas universidades del país. Dos años después, ya contaba con unos 40 ordenadores conectados. Tanto fue el crecimiento de la red que su sistema de comunicación se quedó obsoleto. Entonces dos investigadores crearon el Protocolo TCP/IP, que se convirtió en el estándar de comunicaciones dentro de las redes informáticas (actualmente seguimos utilizando dicho protocolo).
ARPANET siguió creciendo y abriéndose al mundo, y cualquier persona con fines académicos o de investigación podía tener acceso a la red. Las funciones militares se desligaron de ARPANET y fueron a parar a MILNET, una nueva red creada por los Estados Unidos. La NSF (National Science Fundation) crea su propia red informática llamada NSFNET, que más tarde absorbe a ARPANET, creando así una gran red con propósitos científicos y académicos.
El desarrollo de las redes fue abismal, y se crean nuevas redes de libre acceso que más tarde se unen a NSFNET, formando el embrión de lo que hoy conocemos como INTERNET.
En 1985 la Internet ya era una tecnología establecida, aunque conocida por unos pocos. El autor William Gibson hizo una revelación: el término "ciberespacio". En ese tiempo la red era basicamente textual, así que el autor se baso en los videojuegos. Con el tiempo la palabra "ciberespacio" terminó por ser sinonimo de Internet.El desarrollo de NSFNET fue tal que hacia el año 1990 ya contaba con alrededor de 100.000 servidores.
En el Centro Europeo de Investigaciones Nucleares (CERN), Tim Berners Lee dirigía la búsqueda de un sistema de almacenamiento y recuperación de datos. Berners Lee retomó la idea de Ted Nelson (un proyecto llamado "Xanadú" ) de usar hipervínculos. Robert Caillau quien cooperó con el proyecto, cuanta que en 1990 deciden ponerle un nombre al sistema y lo llamarón World Wide Web (WWW) o telaraña mundial.
La nueva formula permitía vincular información en forma lógica y através de las redes. El contenido se programaba en un lenguaje de hipertexto con "etíquetas" que asignaban una función a cada parte del contenido. Luego, un programa de computación, un intérprete, eran capaz de leer esas etiquetas para despeglar la información. Ese interprete sería conocido como "navegador" o "browser".
En 1993 Marc Andreesen produjo la primera versión del navegador "Mosaic", que permitió acceder con mayor naturalidad a la WWW.La interfaz gráfica iba más allá de lo previsto y la facilidad con la que podía manejarse el programa abría la red a los legos. Poco después Andreesen encabezó la creación del programa Netscape.
Apartir de entonces Internet comenzó a crecer más rápido que otro medio de comunicación, convirtiendose en lo que hoy todos conocemos.

martes, 9 de marzo de 2010

PROTEINAS.

Concepto:
son compuestos orgánicos de alto peso molecular, de estructura cuaternaria termolabinas no delizables, formadas por unidades basicas llamadas AMINOACIDOS y unidos por enlaces peptídicos, de igual manera formadas por Carbono (C), Hidrógeno (H), Oxígeno (O) y generalmente Azufre (S) y Fósforo (P).

Las proteinas son polimeros de los aminoacidos, es decir, estan formadas por unidades formando estructuras encadenadas, enroscadas pero con una perfecta organizacion.
Además, son las biomoleculas mas abundantes: en la mayoria de los seres vivos representan el 50% del peso seco.

los aminoacidos son compuestos organicos pequeños que contienen en su cadena un radical amino -NH2 y un radical ácido -COOH.

Se sabe que de los 20 aminoácidos proteicos conocidos, 8 resultan indispensables (o esenciales) para la vida humana y 2 resultan "semiindispensables". Son estos 10 aminoácidos los que requieren ser incorporados al organismo en su cotidiana alimentación y, con más razón, en los momentos en que el organismo más los necesita: en la disfunción o enfermedad. Los aminoácidos esenciales más problemáticos son el triptófano, la lisina y la metionina.
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según estén formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos.

ESTRUCTURA DE LAS PROTEÍNAS
La organización de una proteína viene definida por cuatro niveles estructurales denominados: estructura primaria, estructura secundaria, estructura terciaria y estructura cuaternaria. Cada una de estas estructuras informa de la disposición de la anterior en el espacio.

Estructura primaria
La estructura primaria es la secuencia de aminoácidos de la proteína. Nos indica qué aminoácidos componen la cadena polipeptídica y el orden en que dichos aminoácidos se encuentran. La función de una proteína depende de su secuencia y de la forma que ésta adopte.

Estructura Secundaria.
La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio. Los aminoácidos, a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria.
Existen dos tipos de estructura secundaria:
La a(alfa)-hélice
La conformación beta

Estructura terciaria
La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular.
En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria..
Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte , enzimáticas , hormonales, etc.
Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos.

Aparecen varios tipos de enlaces:

  • el puente disulfuro entre los radicales de aminoácidos que tiene azufre.
  • los puentes de hidrógeno.
  • los puentes eléctricos.
  • las interacciones hifrófobas.

Estructura Cuaternaria
Esta estructura informa de la unión , mediante enlaces débiles ( no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero.

Los péptidos y el enlace peptídico.
Los péptidos están formados por la unión de aminoácidos mediante un enlace peptídico. Es un enlace covalente que se establece entre el grupo carboxilo de un aminoácido y el grupo amino del siguiente, dando lugar al desprendimiento de una molécula de agua.

Así pues, para formar péptidos los aminoácidos se van enlazando entre sí formando cadenas de longitud y secuencia variable. Para denominar a estas cadenas se utilizan prefijos convencionales como:
Oligopéptidos.- si el n º de aminoácidos es menor de 10.
Dipéptidos.- si el n º de aminoácidos es 2.
Tripéptidos.- si el n º de aminoácidos es 3.
Tetrapéptidos.- si el n º de aminoácidos es 4.
Polipéptidos o cadenas polipeptídicas.- si el n º de aminoácidos es mayor de 10.

Cada péptido o polipéptido se suele escribir, convencionalmente, de izquierda a derecha, empezando por el extremo N-terminal que posee un grupo amino libre y finalizando por el extremo C-terminal en el que se encuentra un grupo carboxilo libre, de tal manera que el eje o esqueleto del péptido, formado por una unidad de seis átomos (-NH-CH-CO-), es idéntico a todos ellos. Lo que varía de unos péptidos a otros, y por extensión, de unas proteínas a otras, es el número, la naturaleza y el orden o secuencia de sus aminoácidos.
Si la hidrólisis de una proteína produce únicamente aminoácidos, la proteína se denomina simple. Si, en cambio, produce otros compuestos orgánicos o inorgánicos, denominados grupo prostético, la proteína se llama conjugada.

PROPIEDADES DE PROTEÍNAS
Desnaturalización. Consiste en la pérdida de la estructura terciaria, por romperse los puentes que forman dicha estructura. Todas las proteínas desnaturalizadas tienen la misma conformación, muy abierta y con una interacción máxima con el disolvente, por lo que una proteína soluble en agua cuando se desnaturaliza se hace insoluble en agua y precipita.La desnaturalización se puede producir por cambios de temperatura, ( huevo cocido o frito ), variaciones del pH. En algunos casos, si las condiciones se restablecen, una proteína desnaturalizada puede volver a su anterior plegamiento o conformación, proceso que se denomina renaturalización.

Los 24 aminoácidos:

1. L - Alanina: Función: Interviene en el metabolismo de la glucosa. La glucosa es un carbohidrato simple que el organismo utiliza como fuente de energía.

2. L - Arginina: Función: Está implicada en la conservación del equilibrio de nitrógeno y de dióxido de carbono. También tiene una gran importancia en la producción de la Hormona del Crecimiento, directamente involucrada en el crecimiento de los tejidos y músculos y en el mantenimiento y reparación del sistema inmunológico.

3. L - Asparagina: Función: Interviene específicamente en los procesos metabólicos del Sistema Nervioso Central (SNC).

4. Acido L- Aspártico: Función: Es muy importante para la desintoxicación del Hígado y su correcto funcionamiento. El ácido L- Aspártico se combina con otros aminoácidos formando moléculas capaces de absorber toxinas del torrente sanguíneo.

5. L - Citrulina: Función: Interviene específicamente en la eliminación del amoníaco.

6. L - Cistina: Función: También interviene en la desintoxicación, en combinación con los aminoácidos anteriores. La L - Cistina es muy importante en la síntesis de la insulina y también en las reacciones de ciertas moléculas a la insulina.

7. L - Cisteina: Función: Junto con la L- cistina, la L- Cisteina está implicada en la desintoxicación, principalmente como antagonista de los
radicales libres. También contribuye a mantener la salud de los cabellos por su elevado contenido de azufre.

8. L - Glutamina: Función: Nutriente cerebral e interviene específicamente en la utilización de la
glucosa por el cerebro.

9. Acido L - Glutamínico: Función: Tiene gran importancia en el funcionamiento del Sistema Nervioso Central y actúa como estimulante del sistema inmunológico.

10. L - Glicina: Función: En combinación con muchos otros aminoácidos, es un componente de numerosos tejidos del organismo.

11. L - Histidina: Función: En combinación con la hormona de crecimiento (HGH) y algunos aminoácidos asociados, contribuyen al crecimiento y reparación de los tejidos con un papel específicamente relacionado con el sistema cardio-vascular.

12. L - Serina: Función: Junto con algunos aminoácidos mencionados, interviene en la desintoxicación del organismo, crecimiento muscular, y metabolismo de
grasas y ácidos grasos.

13. L - Taurina: Función: Estimula la Hormona del Crecimiento (HGH) en asociación con otros aminoácidos, esta implicada en la regulación de la presión sanguínea, fortalece el músculo cardiaco y vigoriza el sistema nervioso.

14. L - Tirosina: Función: Es un neurotransmisor directo y puede ser muy eficaz en el tratamiento de la depresión, en combinación con otros aminoácidos necesarios.

15. L - Ornitina: Función: Es específico para la hormona del Crecimiento (HGH) en asociación con otros aminoácidos ya mencionados. Al combinarse con la L-Arginina y con carnitina (que se sintetiza en el organismo, la L-Ornitina tiene una importante función en el metabolismo del exceso de grasa corporal.

16. L - Prolina: Función: Está involucrada también en la producción de colágeno y tiene gran importancia en la reparación y mantenimiento del músculo y huesos.


Los Ocho (8) Esenciales



17. L - Isoleucina: Función: Junto con la L-Leucina y la Hormona del Crecimiento intervienen en la formación y reparación del tejido muscular.

18. L - Leucina: Función: Junto con la L-Isoleucina y la Hormona del Crecimiento (HGH) interviene con la formación y reparación del tejido muscular.

19. L - Lisina: Función: Es uno de los más importantes aminoácidos porque, en asociación con varios aminoácidos más, interviene en diversas funciones, incluyendo el crecimiento, reparación de tejidos, anticuerpos del sistema inmunológico y síntesis de hormonas.

20. L - Metionina: Función: Colabora en la síntesis de proteínas y constituye el principal limitante en las proteínas de la dieta. El aminoácido limitante determina el porcentaje de alimento que va a utilizarse a nivel celular.

21. L - Fenilalanina: Función: Interviene en la producción del Colágeno, fundamentalmente en la estructura de la piel y el tejido conectivo, y también en la formación de diversas neurohormonas.

22. L - Triptófano: Función: Está implicado en el crecimiento y en la producción hormonal, especialmente en la función de las glándulas de secreción adrenal. También interviene en la síntesis de la serotonina, neurohormona involucrada en la relajación y el sueño.

23. L - Treonina: Función: Junto con la con la L-Metionina y el ácido L- Aspártico ayuda al hígado en sus funciones generales de desintoxicación.

24. L - Valina: Función: Estimula el crecimiento y reparación de los tejidos, el mantenimiento de diversos sistemas y balance de nitrógeno.

jueves, 4 de marzo de 2010

Bienvenida!!!!!

Hola amig@s!!! gracias por visitar mi blog.... espero les pueda servir...
no dejen de visitarlo ....
portence bien y dejen sus comentarios... : -)